

2006 Shutdown

George Ginther
University of Rochester

Run IIb Shutdown Activities

- Install and commission Layer 0 detector
- Replace current Level 1 Calorimeter trigger with L1Cal trigger upgrade
- Replace current DFEAs in Level 1 Central Track Trigger with DFEA2
- Complete cabling/commissioning of Level 1 Calorimeter Track Match trigger
- Complete modifications to Level 2 Silicon Track Trigger to accommodate Layer 0 inputs
- Complete hardware modifications to muon Proportional Drift Tube readout to accommodate latency shift
- Refine V15 trigger list for post shutdown running
- Complete platform testing of pre-production AFEII-t readout boards for the Central Fiber Tracker

Some Additional Shutdown Activities

- Preparation for latency shift
- Routine subsystem maintenance and improvements
- Individual channel recoveries
- Silicon Microstrip Tracker
 - HDI recovery effort
 - Install additional BLM to accommodate testing of BLM readout upgrade
- Central Fiber Tracker
 - New SBC in crate 0x52
- Calorimeter
 - Cable harness checks
 - Noise studies
 - Inter Cryostat Detector preamp modifications (and some phototube replacements)
- Muon system
 - Source calibrations, HV calibrations, cable improvements, modifications to VME power supplies to improve radiation resistance
- Level 1 Muon Trigger
 - Improve power supplies
- Luminosity Monitoring
 - Detector maintenance

Layer O Silicon

Detector

- Additional layer of silicon detectors designed to fit inside the current Silicon Microstrip Tracker
 - · Mitigate tracking losses due to radiation damage and detector aging
 - Provides more robust tracking and pattern recognition to accommodate higher instantaneous luminosities
 - Improves impact parameter resolution
- 12288 channels

Installation Overview

- Tight clearances (~ 1mm) and substantial work handling and surrounded by delicate components
 - Requires détailed planning, numerous détector reconfigurations, and significant expertise, tooling and technique development and testing
- Compromises Tevatron vacuum
- Requires significant collision hall access
 - Our estimate of installation duration originally determined Tevatron shutdown duration

Closed Configuration

Clam shells and muon shielding open on north end

North EF open too

South EF and EC open allowing access to the south gap (assuming CF is also open)

Layer O Installation Milestones

ID	TASK NAME	Actual	Current Forecast	Pre- Shutdown Forecast	Milestones
2	Beginning of Runllb Tevatron Shutdown	2/23/06		2/27/06	2/27/06
28	Detector Open, Ready for Access	3/01/06		3/02/06	3/07/06
34	Runlla Be Beam Pipe Disconnected	3/3/06		3/7/06	3/9/06
47	H Disks Removed		3/16/06	3/17/06	3/23/06
56	Runlla Be Beam Pipe Removed		3/24/06	3/27/06	3/31/06
75	Layer 0 Tooling and Mounts Ready		4/7/06	4/10/06	4/17/06
79	Layer 0 Installed		4/11/06	4/12/06	4/19/06
91	RunIIb Be Pipe Connected, Layer 0 Cabled		4/25/06	4/26/06	5/03/06
94	Inner H Disks Re-Installed		5/1/06	5/2/06	5/9/06
99	Silicon Cold and Ready for Technical Commissioning		5/4/06	5/5/06	5/12/06
103	Complete Technical Commissioning of Silicon		5/10/06	5/11/06	5/18/06
118	Detector Closed for Tevatron Resumption		6/01/06	6/02/06	6/4/06

L1 Calorimeter Trigger

- Level 1 Calorimeter Trigger Upgrade
 - Replace 10 racks of Run I calorimeter trigger electronics
 - 80 Analog to Digital Filters (ADFs)
 - 8 Trigger Algorithm Boards (TABs)
 - · 1 Global Algorithm Board (GAB)
 - Sharpens trigger turn-on curves
 - Provides specific object ID at Level 1 (electrons, jets, taus)
- Installation Overview
 - Does not require collision hall access
 - Trigger racks located in Movable Counting House
 - However, new electronics physically displaces current Level 1 Calorimeter trigger electronics
 - Decommissioning of current L1Cal trigger started after beam pipe was uncoupled (to facilitate calorimeter noise studies)
 - Installation duration ~10 weeks

Central Track Trigger

- · Level 1 Central Track Trigger Upgrade
 - Replace 40 Digital Front End Boards and associated infrastructure with DFEA2
 - improve fake rejection capability of Central Track Trigger at higher occupancies due to increasing instantaneous luminosities
 - makes use of full granularity of Central Fiber Tracker inputs

Installation Overview

- Requires several weeks of collision hall access to remove current boards and install replacements
 - · Activity on platform will not interfere with Layer O installation
- Requires intermittent access thereafter for debugging and verification of cabling
- Installation duration ~9 weeks

Additional Trigger Upgrades

- Level 1 Calorimeter Track Match
 - Electronics to provide new capability to match calorimeter and track objects at Level 1
 - Improved rejection and tau triggering capability
 - Requires change in trigger timing to implement this trigger upgrade
 - · Latency measurements complete
 - Will require delay by 3*132nsec
 - Muon system Proportional Drift Tube COBO must be modified to accommodate this change
- Level 2 Silicon Track Trigger
 - Additional electronics to include Layer 0 detector inputs in Silicon Track Trigger
 - To be installed in Movable Counting House
- Level 2 Processor Upgrades
 - Facilitates handling of more complex events and implementation of improved algorithms
 - Installation in progress (no collision hall access required)

Summary of First Week Activities

- Major activities are related to reconfiguring the detector to allow access to the gap region and preparing to open the beam pipe
- Stick mic survey of detector location (Alignment)
- · Open EF to lock EC beam pipe in location
- Close EF
- Remove SNEG beampipe supports (AD support)
- Install remotely activated collapsible beam pipe spacer
- Open detector (EF, CF, EC)
- · Raise temperature of silicon coolant
- Install gap access hardware
- · Prepare for disconnecting beryllium beam pipe
- · Cut flanges off inside end of EC beam pipes

Summary

- Shutdown involves substantial parallel efforts to install Run IIb upgrades of the DZero detector and make a smooth transition to commissioning and operations
- The Layer 0 installation schedule includes ~20%
 schedule contingency in the 14 week shutdown duration
 - Resources identified and preparing for the installation
 - · backups for key Layer O installation team trained
- Need to complete these activities in a timely manner
 - Lab is providing significant support